Exploring carriers' perception about city logistics initiatives

Iván Sánchez-Díaz, Ph.D. Chalmers University of Technology

Outline

- Background
- Objectives
- Methods
- Data Collection
- Results
- Conclusions

Background

Background

- Brazil: 5th largest country (190M), 84% urban, 8th largest economy, and rapid growth
- Brasilia, the Federal District: 2,570,160 inhab., 4th largest in Brazil, 430 inhabitants/km², highest income in Brazil
 - Increase in income produced increase in passenger traffic (in 1950's, transit use: 85%, now 51%) and in freight traffic

Source: Google Public Data- World bank

Source: http://www.maiscomunidade.com/conteudo/2008-05-19/brasilia

Source: http://g1.globo.com/Noticias/Brasil

Source: http://transitonodfies.blogspot.se/

Source: http://www.atribunarj.com.br/

Source: http://bsbnossa.blogspot.se

Freight responsible for 61% of NOx, 65% of particulate matter and 48% of CO2 in Brazil

Initiatives for urban freight

- Not much has been done in Brazil to improve urban freight traffic conditions
 - 70% of public initiatives in Brazil are access restrictions for trucks
- These access restrictions can exacerbate the problem:
 - Sao Paulo: +20% fleet for 65% of carriers (Gatti Junior, 2011)
- Need to consider other initiatives and undertake more comprehensive studies (talk to stakeholders)

Objectives

Objectives

- Understand problems related to urban freight distribution
- Understand carriers operational characteristics
- Study carriers' perception about city logistics initiatives (CLI)
- Analyze key obstacles for the implementation of CLI

Methods

Methods

- Study state-of-the-art of CLI
- Consult transportation specialists and carriers managers to identify common challenges for urban freight distribution and CLI with potential
- Conduct semi-structured interviews with carrier managers to inquire about their operational characteristics and opinions
- Analyze the responses using Spearman tests and Mann-Whitney-Wilcoxon correlation analyses and draw conclusions

Data collection

Data collection approach

- In loco semi-structured interviews
 - Operational characteristics: market segment, # of deliveries, fleet size, operations time, etc.
 - Attitudinal study:
 - Opinion towards urban distribution problems
 - Opinion towards city logistics initiatives

Off-hour deliveries

• shift the time when the goods are picked-up/delivered to the off-hours (e.g., between 7pm and 6am)

Local pick-up points

 local collection points where end-consumers travel to pick-up goods typically ordered through the internet

Unassisted deliveries

 foster freight delivery without requiring the presence of staff or resident at home

Joint staging areas

 depots located close to congested areas where trucks deliver goods during night and electric vehicles, bikes, or motorcycles deliver to final destinations next day

Joint delivery systems

 cooperative program that allows carriers to consolidate cargo, i.e., they reallocate customers to each other to minimize the overlap of each delivery area

Vehicle parking reservation

• improve allocation of trucks parking spaces using intelligent transportation and communication systems

Factors affecting CLI

To make possible a structured analysis we identified and consolidated key factors:

Cost reduction

decrease in last mile operational costs thanks to the initiative

Respondents

- 23 less-than-truckload carriers distributing goods in Brasilia:
 - delivery non-perishable goods
 - own distribution centers-located 15km southwest of Brasilia
 - 390 trucks make together 12,600 deliveries per day

Results

Respondents attributes

Typical operation:

35% 30%

259 20

Characteristics:

—Fleet size: 2-60 trucks

—Deliveries: 40- 4,100

—Distance: 38-170 kms/ tour

—Home deliveries: 5-20%

Urban delivery problems

Opinions towards urban delivery problems

- Parking is perceived as a problem for all truck sizes
- Traffic congestion bigger problem for trucks with high payload
- Carriers serving wholesalers and supermarkets find long delivery times as an issue
- Several comments about access restrictions affecting productivity

es		Influence No Influence Strong Influence 0		'ill	Carrier operational attributes					
← Initiatives	Factors			No	% Delivery Individuals %Fractionated Load	Load Stop	Load Size/Weight	# Delivery / Day	# Deliv ery /Day/Vehicle	Fleet
Off-Hour Delivery (OHD)	Law Cost Reduction Receiver Willingness Compet Initiate Proj. Infrastructure Govern Suport	7 8 7 8 7 9	23	0		(-)	(+)			
Local Pickup Point (LPP)	Law Cost Reduction Receiver Willingness Compet Initiate Proj. Infrastructure Govern Suport	6 8 7 8 0	16	7	(+) (+) (+)		(+)	(+)		(+)

es	Factors	Influence		Will Carrier operational attribute				ibutes		
← Initiatives		No Influence Strong Influence 0 10	Xes	oN	% Delivery Individuals %Fractionated Load	Load Stop	Load Size/Weight	# Delivery / Day	# Deliv ery /Day/Vehicle	Fleet
Unassisted Delivery (UD)	Law Cost Reduction Receiver Willingness Compet Initiate Proj. Infrastructure Govern Suport	7 9 7 9 7	20(3			(+)			(-)
Joint Stage Area (JSA)	Law Cost Reduction Receiver Willingness Compet Initiate Proj. Infrastructure Govern Suport	7 7 9	21	2				(+)		(-)

Results

Potential costs savings on the last mile:

Project	OHD	Рро	Ude	JDS	JSA	VPR
Mean	27%	21%	22%	24%	23%	15%
Median	24%	12%	30%	30%	20%	10%
Std	13%	15%	15%	13%	13%	14%
# Answers	22	7	7	9	11	7

- Carriers expect the highest savings from OHD, with a 27% cost reduction in average
- JDS, JSA, UD, and LPP: a little more than 20% cost reduction in average
- VPRS is expected to produce the lower amount of savings
 15%

Conclusions

Conclusions

- This study focuses on carriers: implementing CLI requires study of different stakeholders (receivers, shippers, PS) perspectives
- Imposing CLI to all carriers can induce unexpected results
- It is important to know about carriers characteristics and needs
 - Parking is the main problem for distribution
 - OHD/UD carriers serving small stablishments
 - LPP/ JSA/JDS larger carriers, higher number of home deliveries, ITS
 - VPRS interest of all carriers
- CLI could decrease costs for carriers and bring benefits from society, but there are several challenges to overcome

Thanks!

Questions?

Authors:

Evandro Manzano dos Santos

University of Brasilia

E-mail: evandrostos123@gmail.com

Iván Sánchez-Díaz, Ph.D., Chalmer University of Technology

E-mail: ivan.sanchez@chalmers.se

